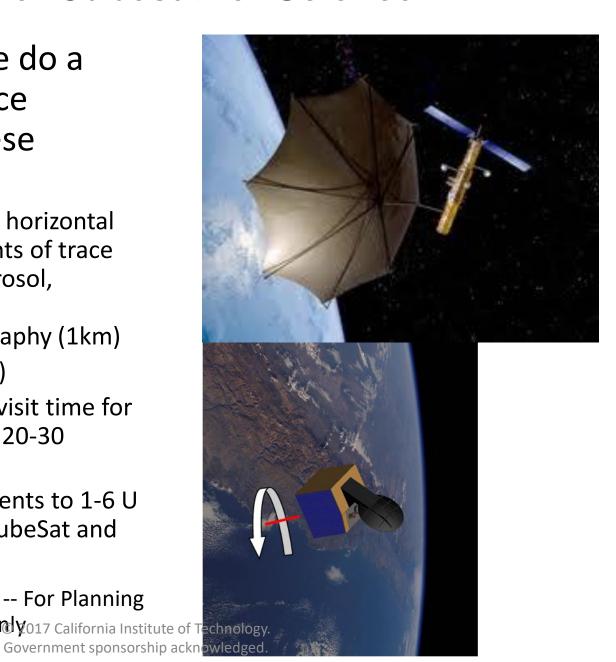


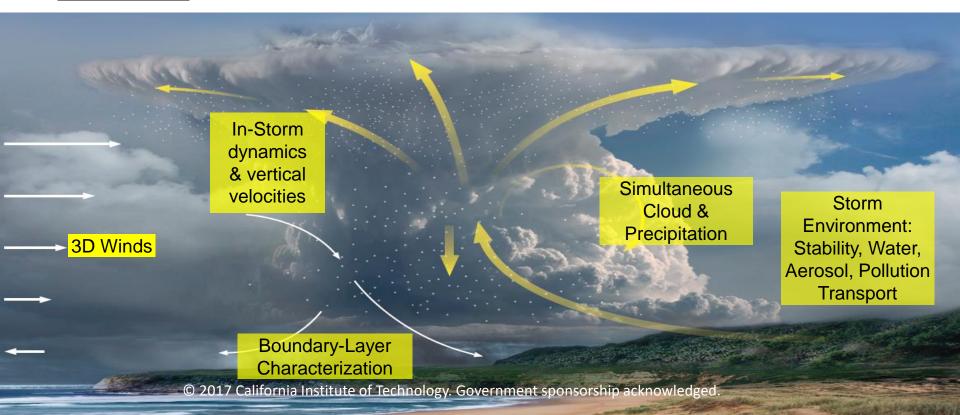
A Status of U-class Earth Science Instruments at JPL

Jason Hyon

Chief Technologist, ESTD


April 24, 2017

Role of Cubesat for Science


- Objective: Can we do a meaningful science missions with these caveats?
 - Provide vertical and horizontal profile measurements of trace gases and cloud/aerosol, vegetation, and topography/tomography (1km)
 - Cost reduction (10X)
 - Provide frequent revisit time for timely observation (20-30 minutes)
 - Miniaturize instruments to 1-6 U (20x10x30cm) for CubeSat and hosted payloads
- Pre-Decisional Information -- For Planning and Discussion Purposes Only 017 California Institute of Technology

Complexity of Understanding Weather Science – Need for multiple measurements

- Constellations or GEO to monitor <u>storm evolution</u>
- Higher spatial resolutions to capture <u>mesoscale structure</u>
- Capture <u>microphysical processes</u> key to precipitation growth
- Advancing technology to characterize the atmospheric <u>boundary-layer</u>
- Improved atmospheric profiling to characterize the <u>storm environment</u>
- Characterizing storm dynamics and extremes with <u>Doppler radar</u>
- Miniaturization of sensors for cubesats, constellations and lower costs

Compact Instrument Development For Cubesat

Initial Release

October 24, 2012

Jet Propulsion Laboratory California Institute of Technology Initial Release 24 October 2012 Compact Instrument Development

CONTRIBUTIONS

Matthew Bennett - Cubesat Spacecraft & Mission Concepts

Shannon Brown - Radiometer Mission Concepts

Tom Cwik - Identification of Existing Opportunities (OCT)

Jeffrey Dickson - Advanced Radiometric & Gravity Sensing Instrument

Raymond Ellvin - Systems Engineering & Development

Anthony Freeman - Mission Concept Formulation

Gani Ganapathi - Thermal Systems

Andrew Gray - OCT Technology Development

Jason Hyon - Strategic Planning & Editor

Eastwood Im - ESTO Technology Development

Andrew Klesh - Spacecraft Capabilities

Carol Lewis - SBIR & Other Funded Developments

Colleen Marrese-Reading - Avionics

Michael Mercury - Spacecraft Capabilities

Pantazis Mouroulis - Spectrometers & Mission Concepts

Alina Moussessian - Radar, Calibration, & Mission Concepts

Eva Peral - Radar Instrument

Greg Sadowy - MMIC & Micromachining

Andrew A. Shapiro - 3D Electronic Packaging

Paul Stek - Radiometer & Calibration

Mark Thomson - Deployable Antenna & Mirror

ii

JPL's Miniaturized Weather Instruments

Visible

Infrared

Microwave

Radar

Miniature Dyson spectrometer

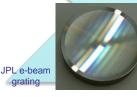
JPL IR&D Wide-Field Grating Spectrometer (WFGS)

MMIC Receiver including Detector

Radiometer **Backend** and Power Conditionin

Frequency

Feedhorn


SSPA &

Power

Combiner

Gravity/formati **Flying**

JPL BIRD **MWIR Detectors**

Motor and **Electronics** Reflector

Drive

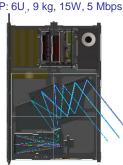
JPI Qualified Thales Cooler

and Data Handling: Onboard **FPGA**

MASC

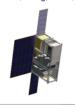
(Pulse Compression and Modulation)

Processing



MicroGRACE Gravity Measurement

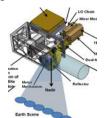
Spatial: submm accuracy SWAP: 6U, 20 kg, 30 W, <1 Mbps


Snow and Water Imaging Spectrometer

Spatial: ±5°, 0.28 km Spectral: 228 Bands, 350 nm - 1.65 µm SWAP: 6U, 9 kg, 15W, 5 Mbps

CubeSat Infrared Atmospheric Sounder (CIRAS)

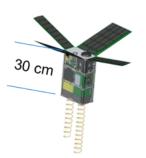
Spatial: ±48.3°, 13.5 km Spectral: 1000 Channels, 4.1-5.4 µm SWAP: 6U, 20 kg, 30 W, 1 Mbps



Microwave Atmospheric Sounder on CubeSat (MASC)

Spatial: $\pm 45^{\circ}$, 15 km (183) –

20 km (118)


Spectral: 8 Channels: 118-183 GHz SWAP: <0.01 m³, 3 kg, 7 W, 10

RainCube: Precipitation Profiler

Spatial: 5 km (Horiz) x 250m (Vert) Spectral: 35.6 GHz SWAP: 6U, 20 kg, 30 W, <1 Mbps

Total Identified Here: 72kg, 112W, 8 Mbps

RainCube Overview

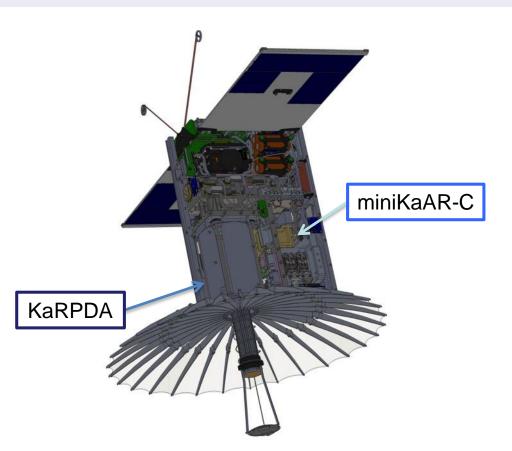
RainCube is a *technology demonstration* mission to enable *Ka-band* precipitation radar technologies on a low-cost, quick-turnaround platform.

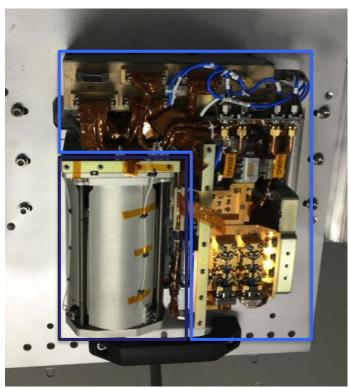
ESTO InVEST Funded Task

- Competed mission for validating new Earth science technologies in space
- Cost-driven mission with \$7.38 million* total augmented budget
- Type II JPL mission, no NASA classification assigned

Mission Objectives

- Demonstrate new technologies in Ka-band on a CubeSat platform
 - Miniaturized Ka-band Atmospheric Radar for CubeSats (miniKaAR-C)
 - Ka-band Radar Parabolic Deployable Antenna (KaRPDA)
- Enable precipitation profiling radar missions for Earth Science


Implementation Summary

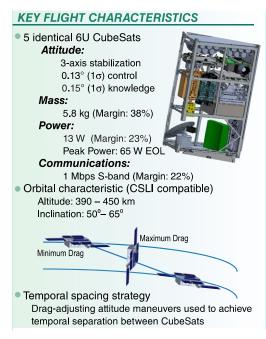

- 6U CubeSat (approx. 34 x 22 x 10 cm, 12 kg)
- Deployed into LEO (approx. 400 km, 3 month mission)
- Selected for ISS resupply launch in Spring 2018 (launch delivery NET Feb '18)

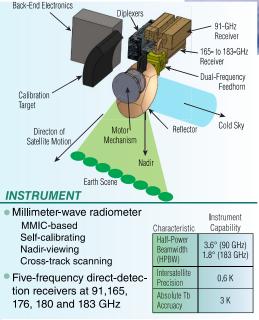
^{*}The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

Radar Instrument

RainCube instrument is a nadir-pointed precipitation profiling radar that will demonstrate two new technologies:

- miniKaAR-C (miniaturized Ka-band Atmospheric Radar for CubeSats)
- KaRPDA (Ka-band Radar Parabolic Deployable Antenna)


Mission Concept



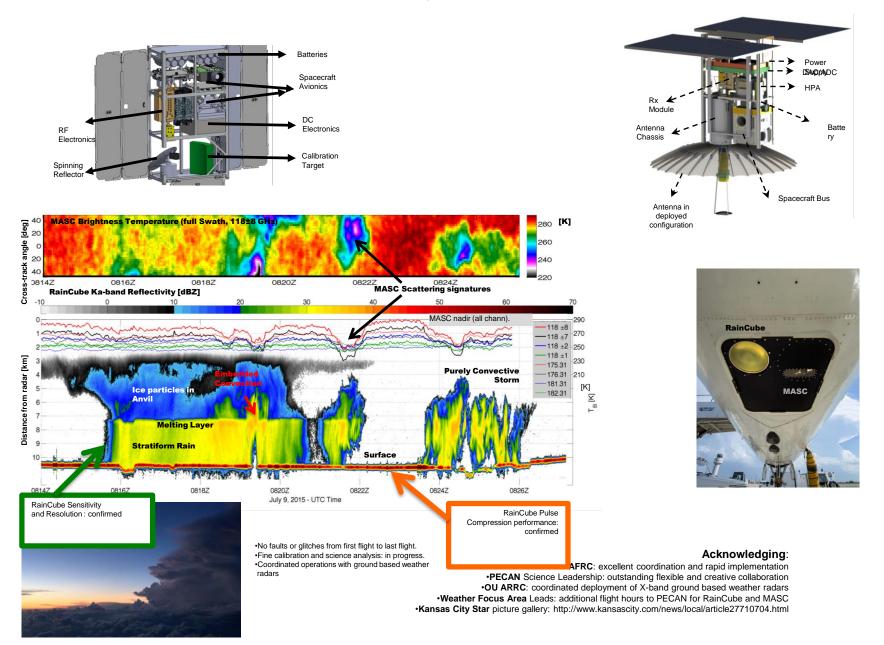
TEMPEST/MASC Mission Concept

 TEMPEST is a low Cost, CubeSat constellation of five CubeSats with identical fivefrequency millimeter-wave radiometers to improve understanding of cloud and precipitation processes.

Sensor Data Records (SDRs)

 Multiple, consecutive scans with 12 channels; brightness temperature in units of Kelvin adjusted for antenna patterns and the reference geolocation position.

183 GHz 180 GHz


176 GHz

Environmental Data Records (EDRs)

- Atmospheric Vertical Temperature Profile (AVTP)
- Atmospheric Vertical Moisture Profile (AVMP)
- Rainfall Rate (RR)
- Imagery
- Pre-Decisional Information -- For Planning and Discussion Purposes Only

RainCube & MASC First Airborne Observations of Clouds and Precipitation during the PECAN Experiment (June-July 2015)

CubeSat Infrared Atmospheric Sounder (CIRAS)*

For NASA InVEST PI: Tom Pagano (JPL) Sponsor: NASA ESTO

CIRAS Mission

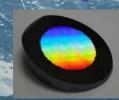
- Demonstrate Key Technologies needed for Infrared Instruments on CubeSats
- Demonstrate ability of Hyperspectral Mid IR radiance measurements to retrieve Temperature and Water Vapor Profiles
- Fill Coverage Gaps and Improve Timeliness of Operational IR Sounders
- TRL in: 5-6, TRL out: 7
- Build: 2016, 2017. Launch 2018-2019

CIRAS		
是自己的人。		
600 km		
1500 km, 150 km		
13.5 km, 3km		
Grating		
4.08-5.13 µm		
1.2 cm ⁻¹ – 2.0 cm ⁻¹		
625		
<0.25 K		
6U Cubesat		
14 kg		
30 W		
0.4 Mbps		

CIRAS will reduce the cost of atmospheric sounding in the infrared and enable more frequent revisit times through constellations

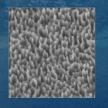
CIRAS Technologies

JPL HOT-BIRD Detector



Ball Aerospace Wide Field Spectrometer

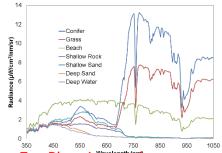
CIRAS Measurements


- Lower Tropospheric Temperature Profiles
- Lower Tropospheric Water Vapor Profiles
- Goal: Zoom Mode (3km) needed for 3D Winds

IPL Immersion

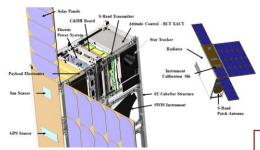
Grating

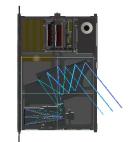
JPL Black Silicon Blackbody & Slit



Snow and Water Imaging Spectrometer (SWIS) for coasts and snow cover

Measurement


- L1: Calibrated hyperspectral radiance at sensor
- L2: Hyperspectral remote sensing reflectance, R_{rs}



Pre-Decisional Information -- For Planning and **Discussion Purposes Only**

Instrument

Heritage i	Instruments

- Hyperion on NM-EO1
- HICO on ISS
- MERIS (ESA)
- PRISM (airborne)

Mass	9 kg
Power	15 W
Volume	6U
Data Rate	> 5 Mbps

Miniature Dyson

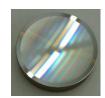
spectrometer

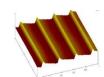
JPL e-

Performance

Parameter	Hyperion	HICO	SWIS	
Spectral range (nm)	400-2500	400-900	350 -1650	
Sampling (nm)	10	5.7	5.7	
Cross-track elements	256	512	620	
FOV (deg)	0.63	6.9	10	
Resolution (mrad)	0.043	0.24	0.33	
Uniformity (%)	60	40	95	
Throughput (10 ⁻⁶ mm ²)	7.4	5.1	69	
Polarization %	5	8	1.5	

Technology Readiness


Proven Technologies


- Broadband polarization-insensitive diffraction grating
- Dyson spectrometer
- Order-sorting filter

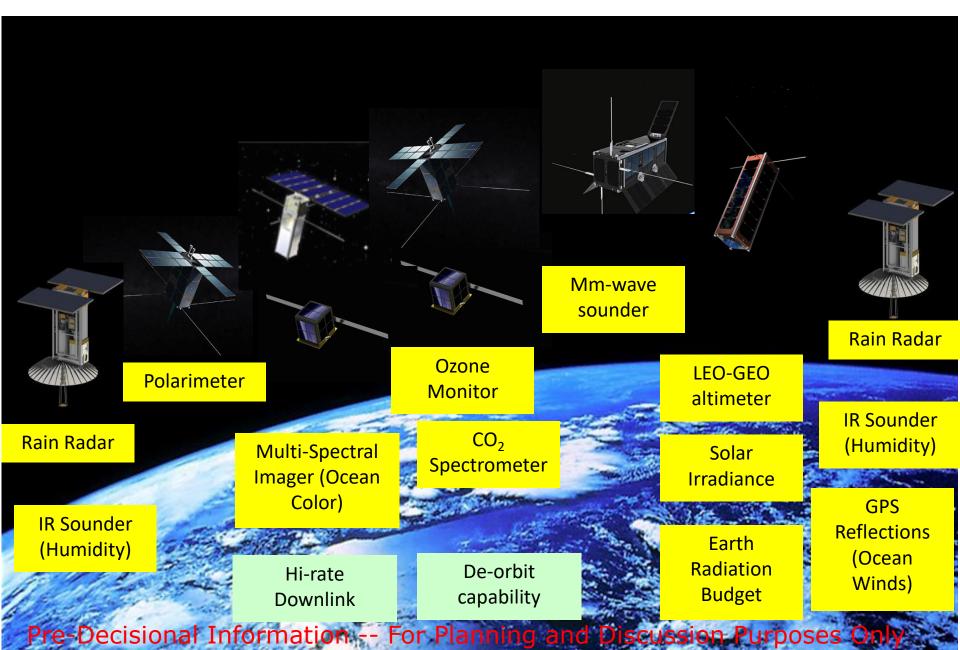
Pending Demonstrations (*: IIP 2013)

- High temp. HgCdTe array with custom anti-reflection coating *
- CubeSat form factor FPIE electronics and on-board processing
- High data rate transmission
- Calibration subsystem *

beam grating

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Pantazis.Mouroulis@jpl.nasa.gov


Mission Concept Trade

	Ocean focus – Cubesat	Ocean focus	Coasts focus - Cubesat	Coasts focus	Land focus	Landsat- like
Spatial Res	1 km	1 km	200 m	200 m	60 m	30 m
Global Revisit	1 day	1 day	9:30 AM + 3:30 PM Daily	9:30 AM + 3:30 PM Daily	10 day	16 day
Global Coverage each revisit	100%	100%	8%	40%	100%	100%
# of Satellites	30	4	18	4	4	12
FOV [deg]	40	40 x2	12 (36 FOR)	30	9	1.5
# of Launches	3	1	2	1	1	3
Altitude [km]	561	561	561	561	626	619
Instrument dimensions	0.01x0.02x 0.01 m	(0.01x0.02x 0.01 m) x2	0.01x0.02x 0.01 m	0.3x0.2x 0.2 m	0.6x0.45x 0.45 m	0.3x0.2x 0.2 m
# of x-track detector elements	400	600 x2	600	1600	1600	600
F stop	F 1.8	F 1.8	F 1.8	f 1.8	f 1.8	f 3
Spacecraft class	Cubesat	SSTL 150 class	Cubesat	SSTL 150 class	SSTL 300 class	SSTL 300 class

Pre-Decisional Information -- For Planning and Discussion Purposes Only

Single Cube-Train Concept

Summary

- Define science mission concepts only CubeSat can solve with the lower cost
 - Temporal sampling and/or heterogeneous instruments
- Miniaturized science instruments that are fully self calibrated are essential
- Establishment of a reliable ground network
- Class C mission 3 year life
 - Class C instrument with SmallSat
- Industry driven propulsion, communication, avionics, power
- We are looking to fill the space through an international partnership

Pre-Decisional Information -- For Planning and Discussion Purposes Only